

СибконтакТ

инверторы синусоидальные

ИС3-12-600; ИС3-24-600; ИС3-48-600; ИС3-110-600

ТУ 3415-004-86803794-2015

РУКОВОДСТВО
ПО ЭКСПЛУАТАЦИИ

1. Назначение

- 1.1. Инверторы синусоидальные ИС3 (инверторы) преобразователи напряжения, преобразующие напряжение источника постоянного тока аккумулятора с напряжением 12B / 24B / 48B/110B в переменное синусоидальное напряжение 220B, частотой 50Гц, предназначены:
 - Для подключения любых нагрузок мощностью до 600Вт. Допускается работа на все виды нагрузок: активную, индуктивную, емкостную, в т.ч. трансформаторов, двигателей переменного тока, а также бытовых электроприборов.
 - Для применения в системах бесперебойного электроснабжения потребителей.
 - Для применения в системах альтернативной энергетики.
 - Для применения в системах электроснабжения на судах, катерах, яхтах.
- 1.2. Условия эксплуатации:
 - диапазон температур окружающей среды

от -10 до +40°C;

• относительная влажность воздуха при t=25°C,

не более 95%;

- отсутствие действия агрессивных паров, жидкостей и газов в концентрациях, разрушающих металлы и изоляцию, токопроводящей пыли, грязи;
- режим работы без ограничений по времени;
- степень защиты изделия от проникновения посторонних предметов и воды по ГОСТ 14254-96 IP20 (не герметизирован).

2. Комплектность

- 2.1. Инвертор синусоидальный ИСЗ2.2. Руководство по эксплуатации1 шт.1 шт.
- 2.3. Упаковочная тара 1 шт.

3. Технические характеристики

Основные технические характеристики указаны в табл. 3.1.

Наименование характеристики	ИС3-12-600	ИС3-24-600	ИС3-48-600	ИС3-110-600
Рабочий диапазон входного напряжения, В	10,5-15	21-30	42-60	90 - 150
Номинальное значение входного напряжения, В	13,5	27	54	120
Номинальный ток потребления инвертора	52±5	26±3	13±2	6±1
при номинальном напряжении питания, А.				
Ток холостого хода, не более, А	0,8	0,4	0,2	0,1
Ток в режиме энергосбережения, не более, А	0,12	0,06	0,06	0,04
Выходное напряжение, В	$220 \pm 10\%$			
Частота выходного напряжения, Гц	50 ± 0.2			
Форма выходного напряжения	синусоидальная			
Номинальная выходная мощность, Вт*	не менее 600			
Номинальный выходной ток, А	не менее 2,7			
Максимальная выходная мощность, Вт		1000±15%		
Время работы на макс. вых. мощности, сек.	не менее 2			
Максимальный «пусковой» ток для	3			
двигательной нагрузки не более, А				
Коэфф. полезного действия, %, не менее	90			
Крест-фактор, не более	2,3			
Защита от КЗ (п.4.2.2)	+			
Защита от перегрузки (п.4.2.3)	+			
Тепловая защита (п.4.2.1)	+			
Защита аккумулятора (п.4.2.4)	+			
Гальваническая развязка	+			
Режим энергосбережения (п.4.2.5)	+			
Масса, кг, не более	1.35			
Габаритные размеры, мм	105x230x65			

Примечание: * Выходная мощность снижается линейно, пропорционально входному напряжению.

4. Устройство и принцип работы

- 4.1. Инверторы состоят из следующих основных частей:
 - корпуса с размещённой внутри платой инвертирования;
 - входных проводов с наконечниками для подключения к аккумулятору 12 / 24 / 48/110В.

Корпус состоит из алюминиевого профиля и торцевых металлических пластин, соединенных с корпусом винтами.

Входные провода сечением 10 кв.мм с медными наконечниками выходят из торцевой пластины через кабельные вводы; провода различаются по цвету: для подключения к положительному контакту аккумулятора — цвет красный, к отрицательному - черный. Обозначение полярности («+» и « - » также указано на табличке инвертора.

Вход и выход инвертора имеют гальваническую развязку.

Инвертор имеет вентиляторную систему принудительного воздушного охлаждения. Вентилятор начинает работать при температуре радиатора (внутри корпуса) выше 40°С.

- 4.2. На торцевых панелях инвертора расположены (см. Рис.1):
 - выходная розетка 220В;
 - общий выключатель (1 Bкл, 0 Bыкл);
 - индикатор напряжения 220В (показывает наличие напряжения 220В на розетке инвертора);
 - переключатель режима: «Активный» «Спящий» (1 «Активный», 0 «Спящий»);
 - кабельные вводы с входными проводами питания;
 - болт защитного заземления.

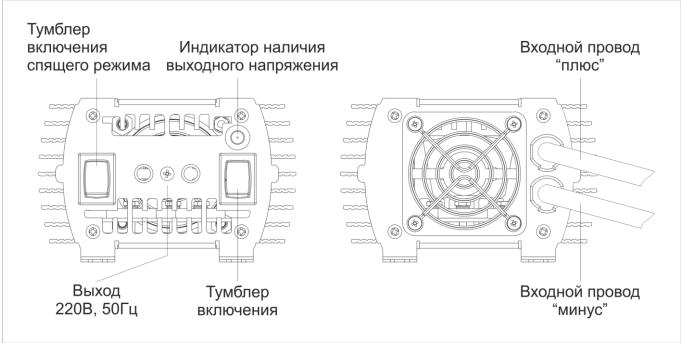


Рис.1.

- 4.3. В конструкции инвертора предусмотрены следующие встроенные схемы защиты:
 - тепловая защита;
 - от короткого замыкания;
 - от перегрузки;
 - от повышения напряжения;
 - защита аккумулятора от полного разряда;
 - режим энергосбережения («спящий» режим).
- 4.3.1. Тепловая защита защита от перегрева, причиной которого может быть эксплуатация при предельных нагрузках и (или) при повышенной температуре окружающей среды, срабатывает и отключает инвертор при достижении температуры внутри корпуса 70°C; после остывания инвертор вновь автоматически включается.
- 4.3.2. Защита от короткого замыкания в нагрузке работает следующим образом: при возникновении короткого замыкания в цепи нагрузки срабатывает схема ограничения тока короткого замыкания и через 10 секунд отключает инвертор. Инвертор переходит в «спящий» режим, при этом, с периодом в 20 секунд анализируется состояние выходного тока. В случае устранения короткого замыкания в цепи нагрузки инвертор автоматически возвращается в рабочее состояние и примерно через 20 секунд напряжение 220В в нагрузке будет восстановлено.
- 4.3.3.Защита от перегрузки работает следующим образом: при возникновении перегрузки (подключение нагрузки свыше максимально допустимой) срабатывает схема защиты от перегрузки и через 2 секунды отключает инвертор. Инвертор переходит в «спящий» режим, при этом, с периодом в 20 секунд анализируется состояние выходного тока. В случае устранения перегрузки инвертор автоматически возвращается в рабочее состояние и примерно через 20 секунд напряжение 220В в нагрузке будет восстановлено.
- 4.3.4. Защита от повышения напряжения питания работает следующим образом: при превышении напряжения питания свыше 16/32/60,5/155B инвертор выключается и автоматически возвращается в рабочее состояние при снижении напряжения питания.
- 4.3.5. При снижении напряжения на аккумуляторе до 10,5/21/40/90В происходит автоматическое отключение инвертора с целью недопущения полного разряда аккумулятора.
- 4.3.6. Инвертор переходит в «спящий» режим через 20 сек работы без нагрузки (менее 6Вт) и вновь включается при подключении нагрузки в течение времени до 20 сек. При наличии на выходе нагрузки более указанной или переключении режима в положение «Активный» инвертор в «спящий» режим не переходит.

5. Меры безопасности

5.1. ВНИМАНИЕ! Выходное переменное напряжение инвертора 220В опасно для жизни. Подключение, обслуживание и ремонт инвертора должны проводиться с обязательным соблюдением всех требований техники безопасности при работе с электрическими установками

- до 1000В, а также всех указаний настоящего Руководства. Необходимо использовать устройство защитного отключения (УЗО).
- 5.2. Не допускается подключение электроприборов с нарушенной изоляцией цепи 220В.
- 5.3. Не допускается эксплуатация инвертора при нарушенной изоляции входных проводов 12/24/48/110В и зажимов; это может вызвать короткое замыкание аккумулятора и привести к травмам, ожогам, стать причиной пожара.
- 5.4. Вблизи инвертора не должно быть легковоспламеняющихся материалов.
- 5.5. Во избежание поражения электрическим током не снимайте крышку изделия при поданном входном напряжении.
- 5.6. Не оставляйте без присмотра включенный инвертор. Размещайте инвертор в недоступном для детей месте.
- 5.7. Не подвергайте провода инвертора воздействию высоких температур.
- 5.8. Инвертор должен быть защищен от прямого воздействия горюче-смазочных материалов, агрессивных сред и воды.

6. Подготовка и порядок работы, рекомендации по эксплуатации

- 6.1. ВНИМАНИЕ! После транспортирования при отрицательных температурах или при перемещении инвертора из холода в теплое помещение перед включением инвертора следует выдержать его в нормальных климатических условиях не менее 2-х часов. Не включайте инвертор при образовании на нем конденсата.
- 6.2. Произведите внешний осмотр изделия с целью определения отсутствия повреждений корпуса.
- 6.3. Подключение инвертора производится в следующем порядке согласно Рис.2:
 - подключите заземление: медный провод сечением не менее 1,5 мм кв. присоедините болтом защитного заземления к корпусу, другой конец к шине защитного заземления;
 - установите общий выключатель «Вкл.-Выкл.» в положение «Выкл.»;
 - установите переключатель «Активный» «Спящий» в положение «Активный»;
 - подсоедините инвертор к аккумулятору с помощью штатных питающих кабелей через проходной предохранитель, расположенный непосредственно на плюсовой клемме аккумулятора (номинал предохранителя указан на Рис.2).
 - ВНИМАНИЕ! Соблюдайте полярность при подключении инвертора к аккумулятору, даже кратковременное действие напряжения обратной полярности приведет к неисправности инвертора (потребуется не гарантийная замена предохранителей на предприятии-изготовителе);
 - установите общий выключатель «Вкл.-Выкл.» в положение «Вкл.», при этом в выходной розетке появится напряжение 220В, на что указывает включение светового индикатора на лицевой панели инвертора;
 - подключите электрооборудование, рассчитанное на переменное напряжение 220В 50Гц, к розетке инвертора;
 - включите электрооборудование (нагрузку).

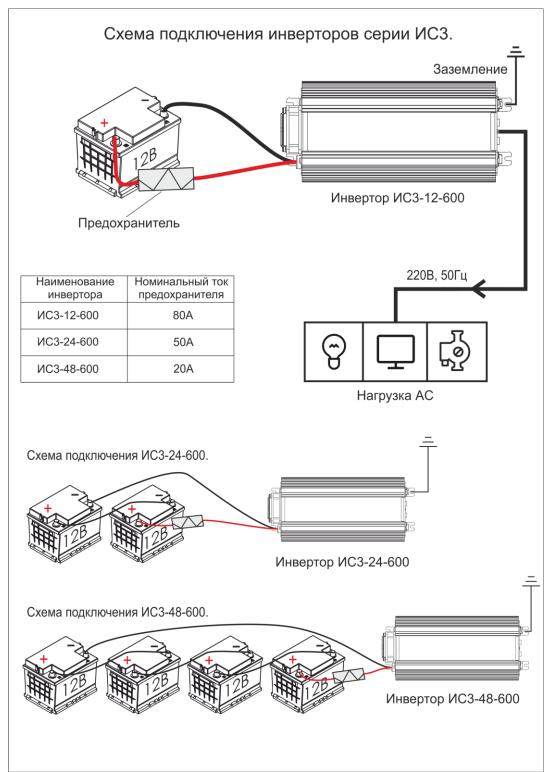


Рис.2.

- 6.4. ВНИМАНИЕ! При подключении нагрузки к инвертору возможна задержка включения электрооборудования порядка 20 секунд, это связано с особенностями работы схемы: инвертор переходит в «спящий» режим через 20 секунд работы без нагрузки, и в рабочий режим переходит примерно через 20 секунд после включения нагрузки. При использовании нагрузки с нефиксируемой кнопкой включения необходимо эту кнопку удерживать в нажатом состоянии до 20 сек. если переключатель «Активный»-«Спящий» находится в положении «Спящий». Если инвертор включен и переключатель «Активный»—«Спящий» находится в положении «Активный», то при работе инвертора напряжение 220В в розетке есть всегда, в том числе и при отсутствии нагрузки; если переключатель «Активный» «Спящий» находится в положении «Спящий», то при отсутствии нагрузки (менее 6Вт) инвертор перейдет в «спящий» режим, при этом резко снизится потребление энергии от аккумулятора.
- 6.5. При необходимости удлинения входных кабелей необходимо использовать медный кабель сечением 10кв.мм. Рекомендуется прокладывать оба кабеля вплотную друг к другу для уменьшения магнитных

полей. Длины кабелей более 3 м не рекомендуются.

- 6.6. Исключайте попадание посторонних предметов внутрь корпуса инвертора через вентиляционные отверстия.
- 6.7. Вентиляционные отверстия должны быть открыты для свободного доступа воздуха. Располагайте инвертор в местах наименее запыленных.
- 6.8. Не подключайте сеть 220В к инвертору.
- 6.9. Время работы аккумулятора в каждом конкретном случае пользователь определяет сам, исходя из его емкости, состояния, условий использования, мощности и типа нагрузки. Для электроприборов, потребляющих постоянную мощность равную номинальной (обозначенной на них) примерное время работы можно подсчитать по формуле:

T=(Cx12/24/48/110)/ P, где C (A*час)— емкость аккумулятора; P (Вт) — мощность нагрузки; T — время работы от аккумулятора (Час); 12/24/48/110 (В) — напряжение аккумулятора.

Или по табл. 6,2.

Таблина 6.2

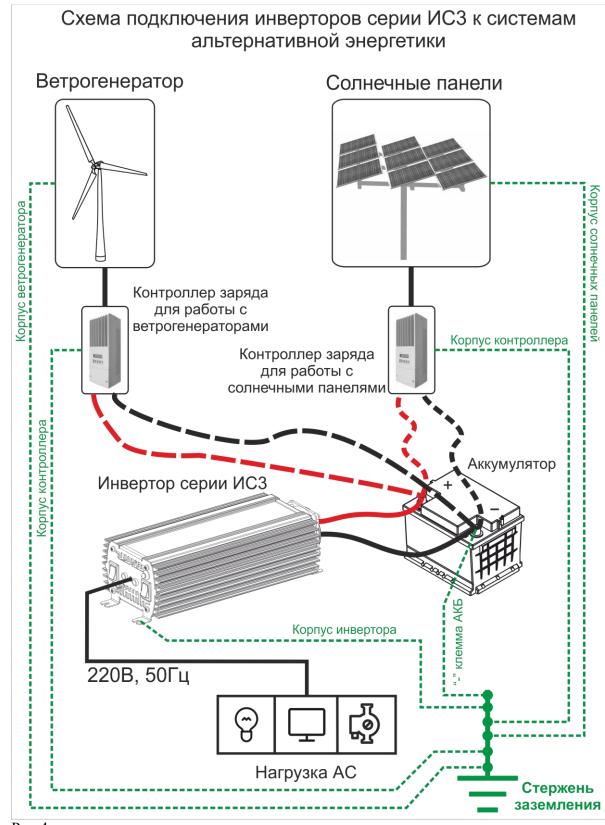
Емкость АКБ, Ач	Напряжение АКБ, В	100Вт	200Вт	500Вт	600Вт
75	12	9	4:30	1:48	1:30
	24	18	9	3:36	3
	48	36	18	7:12	6
100	12	12	6	2:24	2
	24	24	12	4:48	4
	48	48	24	9:36	8
125	12	15	7:30	3:00	2:30
	24	30	15	6:00	5
	48	60	30	12:00	10
	12	18	9	3:36	3
150	24	36	18	7:12	6
	48	72	36	14:24	12
200	12	24	12	4:48	4
	24	48	24	9:36	8
	48	96	48	19:12	16

Примечание: на пересечении горизонтальной линии (емкость, напряжение АКБ) и вертикальной линии (мощность нагрузки) указано время непрерывной работы инвертора в **Час:мин**.

7. Рекомендации по применению инверторов серии ИСЗ

7.1. Применение инверторов в системах бесперебойного питания.

Для обеспечения надежной работы и исключения возможности попадания промышленного сетевого напряжения 220В на «выход» инвертора рекомендуется производить подключения согласно схемы на Рис.3.


Кроме того необходимо соблюдать требования при выборе коммутационных аппаратов К1 и К2:

- действующее значение напряжения коммутации у силовых контактов К1 должно быть не менее 220В.
- действующее значение напряжения коммутации у силовых контактов К2 должно быть не менее **440B**. Это требование объясняется тем, что на силовых контактах реле одновременно присутствует сетевое напряжение и напряжение с выхода инвертора, которые не синхронизированы между собой.
- ток коммутации силовых контактов К1 и К2 должен быть не менее **10A**. Это требование определяется 2-х кратной перегрузочной способностью инверторов по выходной мощности.
- контакты К1 должны обеспечивать одновременную коммутацию фазного и нулевого проводов питающей сети. Перекидные контакты К2 должны обеспечивать одновременную коммутацию фазного и нулевого проводов питающей сети и инвертора. Не допускается применять по два реле для одновременной коммутации «фазы» и «ноля»!
- Реле К2 должно иметь дополнительный блокировочный контакт К2.1 для обеспечения определенной последовательности включения реле К2 и К1.

Рис.3.

7.2. Применение инверторов в системах альтернативной энергетики. Схема подключения инвертора в системе питания от альтернативных источников энергии указана на рис.4 (при построении систем бесперебойного питания с использованием альтернативной энергетики необходимо выполнять рекомендации п.7.1 и п.7.2).

Рис.4.

8. Техническое обслуживание

- 8.1. Периодически проверяйте контакты входной цепи на наличие пригаров и окислов, так как для нормальной работы инвертора необходимо обеспечение хорошего электрического контакта между зажимами проводов и клеммами аккумулятора.
- 8.2. При проведении сезонного обслуживания проверяйте качество болтового соединения проводов к клеммам инвертора и отсутствие повреждения изоляции проводов.
- 8.3. Необходимо периодически протирать корпус изделия, используя мягкую ткань, слегка смоченную спиртом или водой, для предотвращения скапливания грязи и пыли. Оберегайте изделие от попаданий на корпус бензина, ацетона и других подобных растворителей. Не используйте абразив для чистки загрязненных поверхностей.
- 8.4. Необходимо периодически, при необходимости, чистить инвертор, его вентиляционные отверстия с помощью пылесоса.

9. Возможные неисправности и способы их устранения

Таблица 9.1

Признак неисправности	Вероятная причина	Способ устранения	
	Отсутствует контакт между	Зачистить контактирующие	
	зажимом и клеммами	поверхности зажимов и клемм	
	аккумулятора	аккумулятора	
Отсутствует на нагрузке	Разрядился аккумулятор	Зарядить аккумулятор	
выходное напряжение 220В	Сработала защита от КЗ	Отключить нагрузку	
	Сработала тепловая защита	Отключить нагрузку и дать	
		остыть инвертору	
	Сработала защита от перегрузки	Проверить мощность	
		подключенной нагрузки	
	Прочие неисправности	Ремонт у изготовителя	

10. Транспортирование и хранение

- 10.1. Транспортирование изделия должно производиться в упаковке предприятия изготовителя любым видом наземного (в закрытых негерметизированных отсеках), речного, морского, воздушного транспорта без ограничения расстояния, скорости, допустимых для используемого вида транспорта.
- 10.2. Инвертор должен храниться в упаковке предприятия-изготовителя в отапливаемых вентилируемых помещениях при температуре окружающего воздуха от минус -5°C до +35 °C при относительной влажности воздуха до 80%. В помещении для хранения не должно быть пыли, паров кислот, щелочей, вызывающих коррозию.

11. Гарантийные обязательства

- 11.1. Изготовитель гарантирует работу инвертора при соблюдении потребителем условий эксплуатации.
- 11.2. Гарантийный срок 1 год со дня продажи. При отсутствии даты продажи и штампа магазина гарантийный срок исчисляется с даты выпуска (даты приемки) инвертора изготовителем. В течение гарантийного срока изготовитель обязуется, в случае необходимости, произвести ремонт.
- 11.3. Гарантийные обязательства снимаются в случаях:
 - наличия механических повреждений;
 - нарушения целостности пломб;
 - изменения надписей на инверторе;
 - монтажа, подключения и эксплуатации с отклонениями от требований, установленных настоящем Руководстве;
 - нарушения комплектности поставки, в т. ч. отсутствия настоящего Руководства.
- 11.4. Изготовитель не несет никакой ответственности за любые возможные последствия в результате неправильного монтажа, подключения или эксплуатации инвертора.